
Animating Sprites
In the last few chapters, we managed to get the basics of our game out of the way—
we already have an infinite scrolling background, we handle collision detection with
the physics engine, and we already have established controls. How can we improve
our game? Of course, it can be enhanced with animation.

Our character does not move his legs while running, and that is clearly not the way it
should be. In this chapter, we are going to add animations to our character—he will
animate when he is running and jumping. We will also learn about texture atlases
and how to efficiently animate our game.

What is animation?
In order to achieve the desired effect of animating our character, we need to
understand a little more about animation. Behind the scenes, we will be showing
a rapid succession of images, which gives the illusion of movement. This is exactly
what we are going to do.

Animation is an easy way to add life to your game, to make it look nice and
engaging. We are going to use animation actions in order to run animations on
our character. An easy way to do this is by simply adding animation frames to
some array, feeding it to an action, and instructing the character sprite to run it
as shown in the following figure:

Changing the animation frames creates an illusion of movement

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[50]

But there are some problems with it. Rendering individual frames from separate
textures is not a fast task. It requires a lot of so-called draw calls. Each time you draw
something on screen, you transfer that data to the video chip, and it performs the
drawing. But each of these calls is expensive as it bears some overhead. If you have
many animated objects on screen, you might experience slowdowns (lags) and the
frame rate may drop. To optimize our sprite drawing, we will use texture atlases.

What is a texture atlas?
To understand what a texture atlas is, check the figure following this section. As you
can see, an atlas is an image that contains many subimages. Our game is able to
access certain images in a texture atlas due to a special configuration file that keeps
the coordinates of each image in a texture atlas.

Before Xcode 5 and Sprite Kit, you had to use third-party tools in order to create
texture atlases, but now, all you need to do is create a folder named name.atlas,
where the name can be anything; add images to it and add that into your project in
Xcode. Xcode will handle everything for you transparently, and you won't have to
worry about plists, coordinates, efficiency, and everything else.

Benefits that texture atlases provide are as follows:

•	 All drawing from one atlas can be processed in one draw call, thereby
increasing performance dramatically.

•	 If your image has empty space, it will be cropped, and when you need the
image, it will be restored. This way, you save memory, and your applications
are smaller, which is a good thing.

However, you should remember that a texture atlas may not exceed 2000 x 2000
pixels, and if you have images that are larger than that, there is no point putting
them into atlases. If the sum of all images exceeds this value, the second image of the
atlas will be created in order to fit all images, as you can see in the following figure:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

Images in a texture atlas

Texture atlases are also smart. If you run on a retina device and you have two
versions of the atlas—one for the retina and one for regular resolution—it will
use the correct images. All you have to do is have one atlas with all of the images,
but retina images should have a @2x suffix, for example, spaceship.atlas,
and images such as spaceship1.png and spaceship1@2x.png. Xcode will create
different texture atlases for different devices, so you don't have to worry about
memory and other limitations.

Adding animations to our project
In order to add animations to our endless runner game, we need to perform the
following steps:

1.	 Find run.atlas, shield.atlas, deplete.atlas, and jump.atlas in the
resources for this chapter. Drag-and-drop them into the project and be sure
to check Copy items into destination group's folder.

2.	 Add the following property to ERGPlayer.h. We will use it to store
animation frames:
 @property (strong, nonatomic) NSMutableArray *runFrames;

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[52]

3.	 Add the following code at the end of the ERGPlayer.m init method:
 [self setupAnimations];

 [self runAction:[SKAction repeatActionForever:[SKAction
animateWithTextures:self.runFrames timePerFrame:0.05 resize:YES
restore:NO]] withKey:@"running"];

First, we will call the setupAnimations function, where we will create an
animation from the atlas. On the second line, we will create an action that
repeats forever, takes an array of animation frames, and animates the sprite,
showing each frame for 0.05 seconds. The resize property is needed to adjust
the size of the sprite if it is smaller or larger in a new frame of animation.
The restore property changes the sprite back to the texture it had before
animation. If we add a key to the animation, we will be able to find it later
and remove it if needed.

4.	 The next thing to add is the method that makes that animation; add it
to ERGPlayer.m:

- (void) setupAnimations
{
 self.runFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *runAtlas = [SKTextureAtlas atlasNamed:@"run"];

 for (int i = 0; i < [runAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"run%.3d", i];
 SKTexture *tempTexture = [runAtlas textureNamed:tempName];
 if (tempTexture) {
 [self.runFrames addObject:tempTexture];
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

On the third line of this method, we create a new array for animation frames.
Then, we load the texture atlas named run. In the for loop, we create a new
name for the texture and load it with that name into the frames array. We need
to check for nil, as adding nil objects to an array raises an exception, and we
don't want that. The format specifier, @"run%.3d", might have caught your
attention. It means that we want a string starting with run and ending with a
decimal number .3d means that the number has to be at least 3 digits long;
if it is smaller, replace the missing digits with zeroes. The names that this code
generates will look like run000, run001, and so on. If you are using a retina
device, they will automatically be adjusted to run000@2x and run001@2x.
You don't need to specify the file extension. You can read more about format
specifiers in the NSString class reference.

Build and run the project in a simulator. As you can see, our character has gained
nice animation. Try adjusting the scroll speed and animation speed to fit each other
better. There are some other adjustments we can do, which are as follows:

•	 If the player is already running, we don't want to start the animation again
•	 We may want a way to stop an animation

To accomplish these tasks, add the following two methods to ERGPlayer.m:

- (void) startRunningAnimation
{
 if (![self actionForKey:@"running"]) {
 [self runAction:[SKAction repeatActionForever:[SKAction
animateWithTextures:self.runFrames timePerFrame:0.05 resize:YES
restore:NO]] withKey:@"running"];
 }
}

- (void) stopRunningAnimation
{
 [self removeActionForKey:@"running"];
}

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[54]

In the startRunningAnimation method, we do the same action that we did before
in the init block, but we check if the player already has an animation with this key,
and if he does, we do nothing here. In the second method, we find the animation and
remove it, effectively stopping it.

If you change the images in your project or add new ones, Xcode
doesn't make new atlases. In order to do that, execute the Run and
Clean commands from the Product menu on the Xcode file menu.
This forces Xcode to recreate texture atlases. You can see this in the
following screenshot:

Next up is the jump animation. We will add it in the same way as before.
The following things need to be done:

1.	 Check if you have jump.atlas in your project. If you don't, add jump.atlas
to your project in the same way as run.atlas.

2.	 Add the following property to ERGPlayer.h:
@property (strong, nonatomic) NSMutableArray *jumpFrames;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

3.	 Add the following code to the setupAnimations method in ERGPLayer.m.
It does the same, in that we create an array and add frames to it:
 self.jumpFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *jumpAtlas = [SKTextureAtlas
atlasNamed:@"jump"];

 for (int i = 0; i < [runAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"jump%.3d", i];
 SKTexture *tempTexture = [jumpAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.jumpFrames addObject:tempTexture];
 }
 }

4.	 Add a new method to handle jumping:

- (void) startJumpingAnimation
{
 if (![self actionForKey:@"jumping"]) {
 [self runAction:[SKAction sequence:@[[SKAction
animateWithTextures:self.jumpFrames timePerFrame:0.03 resize:YES
restore:NO],[SKAction runBlock:^{
 self.animationState = playerStateInAir;
 }]]] withKey:@"jumping"];
 }
}

The only interesting thing in this method is the new action—the runBlock
action. It lets you run any code in action, and here we set the player's state to
playerStateInAir, which means that the player is neither running nor jumping.

This is pretty much it. But how can we determine when to execute the jump
animation or run animation? We don't want our character to run while they
are in the air. This is why we need a state system for a player sprite.

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[56]

Character states
In order to correctly handle states, we will expand our character code to handle
different states that can occur. Firstly, we need to identify the states, which are
as follows:

•	 Running state: This is the default state when the character is running on
the ground

•	 Jumping state: This is the state when we press a button to jump, but it
should be limited so that we don't continue the jumping state when we
are in the air

•	 In air state: This is the state when the character is still in the air following
a jump

In order to use these states, let's define them in ERGPlayer.h:

typedef enum playerState {

 playerStateRunning = 0,
 playerStateJumping,
 playerStateInAir

} playerState;

This code creates a new type of variable that is internally a usual integer, and we
use that to identify the state of the character. We could use integer, character,
or even string, but these can lead to problems. We will have to remember what
state corresponds to what integer, and here we just write the state as it is.

Now, we need to store this state in our character data. Add the following line
to ERGPlayer.h:

@property (assign, nonatomic)playerState animationState;

In this case, we want to execute some custom code when the animationState
property is changed, so we implement our own setAnimationState: method.
It is called each time we change the animationState property:

- (void) setAnimationState:(playerState)animationState
{
 switch (animationState) {
 case playerStateJumping:
 if (_animationState == playerStateRunning) {
 [self stopRunningAnimation];
 [self startJumpingAnimation];
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

 break;
 case playerStateInAir:
 [self stopRunningAnimation];
 break;
 case playerStateRunning:
 [self startRunningAnimation];
 break;
 default:
 break;
 }

 _animationState = animationState;
}

This method is triggered every time we try to set self.animationState, and instead
of the default implementation, it goes through this. We have a switch here that looks
for what kind of animationState we received. If it is the jumping state, and the
previous state was running, we stop the running animation and start the jumping
animation. As you may remember, after we have finished the jumping animation,
it changes its state to playerStateInAir. If we get to the running state, we start the
running animation. After everything has been handled, we set our instance variable
to the new value that we received. We do this only now as we need to know the last
known state, and we can get it from _animationState.

Properties and instance variables
There are two ways to store data in your classes—by using properties or
instance variables. Instance variables are easy and fast to access, and you
might use them if you need high-performance code. Properties usually add
some overhead to access, but offer much more. Properties are essentially
instance variables that are accessed with special methods. If you have
@property NSString *myString, it will be stored internally in
_myString, even if you don't add anything else. There will also be two
methods that access the said variable—(NSString *) myString and
(void) setMyString: (NSString *)myString. These methods are
hidden and generated by the compiler. Each time you access properties,
these methods are called. All of this is generated for us by Xcode behind
the scenes. However, if you need to change the way they are accessed—like
we do in this chapter—you can redefine these setter and getter methods.
You might want to inform someone or call some other methods from there.
This functionality adds a little bit of overhead, which in most situations is
negligible. But should you need to perform some very complicated and
CPU-intensive calculations, make sure to check the performance difference.
There are also other technologies that are only possible with properties
such as key-value observing.

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[58]

The next thing that needs to be done is the location where we change states. The place
where everything changes is the update: method in ERGMyScene.m; find the line
where we enumerate child nodes with the name player and replace the current
implementation with this:

 [self enumerateChildNodesWithName:@"player" usingBlock:^(SKNode
*node, BOOL *stop) {
 ERGPlayer *player = (ERGPlayer *)node;
 if (player.accelerating) {
 [player.physicsBody applyForce:CGVectorMake(0,
playerJumpForce * timeSinceLast)];
 player.animationState = playerStateJumping;
 } else if (player.position.y < 75) {
 player.animationState = playerStateRunning;
 }
 }];

The preceding code searches for a player node and applies force to it—this is all old
code. The thing that was added here is the state change. Right after we apply force,
we know that we are probably jumping. Handling further jumping continues in the
previously discussed method. If the position of the sprite on the y axis is less than
75, the state is probably running, since even the smallest impulse will get us out
of that position. The actual position for the default sprite is 68, but as the frames of
animations change, this can fluctuate up to 75. Build and run the project to see the
animation in action.

Adding shield animations
Other animations and methods that we might want to add are the shield animations.
A shield is something that protects the player from different hazards. It has on and
off animations. You can check how the effect looks in the following screenshot:

The background looks dull

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

Let's check the course of the action:

1.	 Add the following properties to ERGPlayer.h:
@property (strong, nonatomic) NSMutableArray *shieldOnFrames;
@property (strong, nonatomic) NSMutableArray *shieldOffFrames;
@property (strong, nonatomic) SKSpriteNode *shield;
@property (assign, nonatomic) BOOL shielded;

2.	 The first two properties are arrays for animation frames, the shield node is
added to a character sprite in order to show shield animations (we can't show
it on the character itself as it will disappear), and shielded is a state variable
so that other nodes can find out if we are shielded or not.

3.	 The next step is to create a shield node in the init method of EGPlayer:
 self.shield = [[SKSpriteNode alloc] init];
 self.shield.blendMode = SKBlendModeAdd;
 [self addChild:self.shield];

Here, we change blendMode to add since it results in a better visual effect.

Blending modes
A blending mode is the way how different pixels are added
together. By default, SKBlendModeAlpha is used. It uses an
alpha value of the pixel to determine which pixels and what
percent of color of each pixel are visible, and which are not.
Other blending modes are used if you need to stimulate light
(the additive blending mode) or increase the brightness and
color, or completely overlay one layer by another. The list of
available blending modes can be found in the SKBlendMode
class reference.

4.	 The next thing to do is add another custom setter for the shielded variable,
where we will handle all animations:

- (void) setShielded:(BOOL)shielded
{
 if (shielded) {
 if (![self.shield actionForKey:@"shieldOn"]) {
 [self.shield runAction:[SKAction
repeatActionForever:[SKAction animateWithTextures:self.
shieldOnFrames timePerFrame:0.1 resize:YES restore:NO]]
withKey:@"shieldOn"];
 }
 } else if (_shielded) {
 [self blinkRed];

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[60]

 [self.shield removeActionForKey:@"shieldOn"];
 [self.shield runAction:[SKAction animateWithTextures:self.
shieldOffFrames timePerFrame:0.15 resize:YES restore:NO]
withKey:@"shieldOff"];
 }
 _shielded = shielded;
}

5.	 First, we look for a new value that we are presented with. If it is YES and we
don't have the animation running, we start the shield on animation. It repeats
itself since we want the shield to animate while it is on. If we are presented
with NO, the other portion of this method gets triggered. It checks if the player
was shielded before, and if it was, the character sprite blinks red, and it is time
to run the shield off the animation. If there was no shield before, we don't
want to play the shield dismissing animation. We want it to run only once.
We also don't want to have the shield on animation repeating itself, so we
remove the old action. After that, we set the shielded variable to the
provided value.

6.	 Add the blinkRed method:
- (void) blinkRed
{
 SKAction *blinkRed = [SKAction sequence:@[
 [SKAction
colorizeWithColor:[SKColor redColor] colorBlendFactor:1.0
duration:0.2],
 [SKAction
waitForDuration:0.1],
 [SKAction
colorizeWithColorBlendFactor:0.0 duration:0.2]]];
 [self runAction:blinkRed];
}

7.	 This method makes our player sprite red for a short while and then
returns it back to its regular state. To do this, it uses an action named
colorizeWithColor:, waits a little, and proceeds to colorize with the
default value, which is 0.0, meaning no colorization. The blend factor
specifies the amount of target color to be added to the existing texture.
The higher the blend factor is, the more intense is the color, and on 1.0,
all pixels of the texture will be of the chosen color.

8.	 Next is the setupAnimations method; we need to add new textures to it:
 self.shieldOnFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *shieldOnAtlas = [SKTextureAtlas
atlasNamed:@"shield"];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

 for (int i = 0; i < [shieldOnAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"shield%.3d", i];
 SKTexture *tempTexture = [shieldOnAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.shieldOnFrames addObject:tempTexture];
 }
 }

 self.shieldOffFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *shieldOffAtlas = [SKTextureAtlas
atlasNamed:@"deplete"];

 for (int i = 0; i < [shieldOffAtlas.textureNames count]; i++)
{
 NSString *tempName = [NSString stringWithFormat:@"deplete%
.3d", i];
 SKTexture *tempTexture = [shieldOffAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.shieldOffFrames addObject:tempTexture];
 }
 }

9.	 Same as before, we create arrays and populate them with textures extracted
from texture atlases.

10.	 In order to test the shielding functionality, you can add self.shielded = NO
to the startRunningAnimation method, and self.shielded = YES to
the startJumpingAnimation method. This way, while you are in the air,
the shield will work, but if you touch the ground, it will fade away.

Build and run the project now to see if everything runs as expected.

Now that we have most of our animations out of the way, we can recall the process
of adding animations to the node:

•	 Create an array to hold animation frames
•	 Extract textures from the texture atlas by iterating over it in a loop
•	 Create a method to run the animation action on the needed node
•	 Remove the action from the node if needed

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[62]

Adding a parallax background
As you may have noticed, we have huge grey windows in our background (see the
screenshot in the Adding shield animations section), and it would be great to add a
parallax background over it. We will do it the same way we did with the original
background. We will add new sprite nodes and move them every frame.

The things that need to be done to add a parallax background are as follows:

1.	 Add parallax.png to images.xcassets in the Xcode project, either by
drag-and-drop or by clicking on the plus button in Xcassets. Select parallax
in the left Xcassets pane and move it from 1x to 2x by dragging, as we have
high-resolution artwork (see the following screenshot).

2.	 The next thing we need is some variables in Common.h:
static NSString *parallaxName = @"parallax";
static NSInteger parallaxMoveSpeed = 10;

3.	 We also need to have parallax as a property in ERGMyScene.h in order to
replace it with a new one. Add the following line:
 @property (strong, nonatomic) ERGBackground *currentParallax;

4.	 The next thing that we need to do is create that background layer. To do
that, go to the scene's initWithSize: method, and right after the creation
of self.background, add the code for the parallax layer's creation:
 self.currentParallax = [ERGBackground generateNewParallax];
 [self addChild:self.currentParallax];

5.	 In order to generate a new parallax, we need to expand ERGBackground.h.
Add the following method definition there:
+ (ERGBackground *)generateNewParallax;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

6.	 In ERGBackground.m, write the method itself:
+ (ERGBackground *)generateNewParallax
{
 ERGBackground *background = [[ERGBackground alloc]
initWithImageNamed:@"parallax.png"];
 background.anchorPoint = CGPointMake(0, 0);
 background.name = parallaxName;
 background.position = CGPointMake(0, 0);
 background.zPosition = 4;
 return background;
}

7.	 Here, we create the new sprite node, set its position and anchor point for our
convenience, and adjust its position on the z axis. Within the same file, in the
generateNewBackground method, change the assigned zPosition value
from 1 to 5 so that it appears above the parallax layer.

8.	 And finally, in the update: method in ERGMyScene.m, add code to handle the
moving and creating of new parallax layers:
 [self enumerateChildNodesWithName:parallaxName
usingBlock:^(SKNode *node, BOOL *stop) {
 node.position = CGPointMake(node.position.x -
parallaxMoveSpeed * timeSinceLast, node.position.y);
 if (node.position.x < - (node.frame.size.width + 100)) {
 // if the node went completely off screen (with some
extra pixels)
 // remove it
 [node removeFromParent];
 }}];
 if (self.currentParallax.position.x < -500) {
 // we create new background node and set it as current
node
 ERGBackground *temp = [ERGBackground generateNewParallax];
 temp.position = CGPointMake(self.currentParallax.
position.x + self.currentParallax.frame.size.width, 0);
 [self addChild:temp];
 self.currentParallax = temp;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Animating Sprites

[64]

9.	 Here, we find a node with parallaxName, and we remove it if it is off the
screen. If the current parallax layer is halfway done or so, we create a new
parallax layer and set its position to where the last one ends, so that they
interconnect flawlessly. The following screenshot shows the addition of
parallax.png to Images.xcassets:

Adding parallax.png to Images.xcassets

Build and run the project, and you will see that the parallax background layer adds
to the atmosphere and look of the project. Suddenly, our game has gained depth and
looks great, as shown in the following screenshot:

The parallax layer adds depth to our game

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

What is parallax?
Parallax is an effect that allows us to simulate depth on a two-dimensional
screen. This effect can be seen when you travel by train or by car. Trees that
are near you move fast, those that are at a distance move slowly, and things
on the horizon barely move. When some objects move faster and other
objects move slower, we get a feeling that there is depth to the scene.
We use this effect to add polish to our game.

Summary
In this chapter, we have learned that animation is a powerful way to add life to
your game. It helps to engage the player, as smooth and nice-looking animations are
always an eye candy. Learn to appreciate your animations and players will enjoy
your games. We have also learned about animations; how to create them, and how
to run and cancel them. We also found out what texture atlases are and how they
increase performance and save memory. We also learned how to colorize sprites,
how to perform parallax scrolling, and how to add depth to our game.

In the next chapter, we will learn about particle effects, and how to create and use
them to add more eye candy to your game.

www.it-ebooks.info

http://www.it-ebooks.info/

